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ABSTRACT

A series system for which only failed components are
replaced (or repaired) is considered. Nonfailed
components are in a "state-of-suspended animation"
while the system is down. The limiting average system
up time is computzd for arbitrary failure and repair
distributions. The limiting distribution of system
up time, the number of failures of component

i (i=1,2, ..., k) and the down time of component

i (1i=1,2, ..., k) are calculated. The asymptotic

distribution of the cost of repair is also derived,
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AVATLABILITY THEORY FOR MULTICOMPONENT SYSTEMS

by

N

Richard E. Barlow and Frank Proschan

N

0. INTRODUCTION AND SUMMARY

‘distributions (or both). An example of this type is the paper by Gaver (1963)

In this paper we consider one of the most basic stochastic models in

reliability theory--nameiy the on-off process generated by failures and repairs

4
I
i
1
4

1

i
H
4
3
K
{
i
b
7
b
1
i

of components in a series system. A series system of k components operates if
and only if each of the k components operates. No component operates while

the system is down. Furthermore, only failed components are repaired and/or

Sty

replaced; repair or replacement takes a random time. Repaired components are

assumed to function like new components.

PEVRVPE RN 3

There is a large literature dealing with availability, the probability that

AL

the system is functioning. However most papers assume special repair or failure

and the paper by Obretenov, Dimitrov and Uzunov (1969). Many papers, including
those just named, are concerned with parallel systems with independently operating
components - that is nonfailed components are not usually in a state of

"suspended animation" during repair of a fajled component, as in our model. The

o et 13 Lt e 4 DN R Rttt DL BN NN L A St s NS

reader may consult the IEEE Transactions on Reliability as well as the Colloquium

STRPRUE S

on Reliability Theory held at Tihany, Hungary, 16-19 September, 1969. A model
more general than ours is treated by M. C. Botez (1969). However there is no

overlap with our results,

Let xir be the duration of the rth functioning period of component 1 with

distribution ¥, and mean My s i=1,2, ..., k (i.e., time to failure of rth

i

replacement for component 1 excluding system down times). Let Dir be the

duration of the repair time (or down time) for component 1 with distribution

Gi and mean vy i=1,2, ..., k. Ve assume that for 1 =1, ..., k,
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- {X } and {D & are mutually independent renewal processes. P
. ir r A
g r=1,2,-to r=l,2,... 3
1 A typical failure-repair history for such a series system might look as . j
follows: f
; "
Z ]
; U i
9 P ) | r ;
v ! ] | |
4 { |
: l ' ] ( 5
| l | :
: Down k) } A $ - 3
' Xy, XDy Xty XyptDypDyy Time ;
: 3
¢ §
3 FIGURE 1: HISTORY OF A SERIES SYSTEM é
‘ i
’ ;
3 A
3 In Figure 1, component 1 fails at time Xil and the system is down Dil 3
.hours. The system again operates from time Xil + Dil to time le . f
Component j fails at time hjl and is replaced by time le + Djl . ;
3
Let £{(t) = i if the system is down at time t due to the failure of

component i (i = 1,2, ..., k) . Let &(t) = 0 if the system is operating at

time t . We are interested in the limiting probability, 1lim P[£(t) = 1] ,
ol ]

I S N L WL T

The limiting system availability, 1lim P[&(t) = 0]

that the system is in state i .
: oo

is of special interest.

Since only failed components are replaced with new or like-new components,

PPy

the age distribution of components in the system quickly vecomes mathematically

very complicated. The process {§(t) ; t > 0} has in fact no regeneration points.

It is remarkable, however, that many quantities of interest are, in the linmit,
mathematically very simple and depend only on component mean lives and component

mean repair times. The limiting average system availability, as we shall prove in

Section 2, is

S 2000 a Y S L e i 1 3t 1 i
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1 k def
(0.1 lim -—fP[E;(u) = 0]du = 1/[1 + Z v./u] =71
t Lo D 0
oo i=1
(4]
while
t Y
(0.2) lim %fP[E(u) = ildu = =2 7 def g = 1,2, o, K
toe of By

These formulae are true for arbitrary failure and repair distributions. 1If

p lim P[g(t) = i] exists, then it is equal to LI Although (0.1) is well known
3 too

for exponential failure and exponential repair [cf. U.S. Naval Weapons Reliability
Engineering Handbook (1968)], a rigorous proof secems to be missing for the general
3 case. A heuristic proof for (0.1) was offered by Bazovsky, MacFarlane, and

Wunderman (1962).

2 Let ﬁi(t) be the number of replacements of component i in time t . We

% show that

EN (t) 7
lim —— = 9 £=1,2, ..., k.
to My

This result can be used in determining spare parts requirements, since not/ui

will be, approximately, the number of components of type i required in [O,t] .

In Section 3 we prove the asymptotic normality of t-k[si(t) - tm;l] where
m, = uiwal is, approximately, the mean time between failures of component 1 .

We also show that

t’k[ﬁ(t) - tm 1)

is asymptotically normal, where

~ k -~
N(t) = } N, (t)
i=1

4
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1, Pro - IMINARIES

Assume that all random variables associated with the series system discussed ;

in the introduction are defined on a probability space (2,A,P) . Recall that

{xir(.)}r=1

with component i (i = 1,2, ..., k) .

and {Dir(-)}°° are mutually independent renewal processes associated
r=]1

S S S

We suppress the argument of random
variables, Xir(w) , evaluated at w € 2, except where useful in Section 2. Let

n
Sin = rél Xir and Ni(t) = gup {n | S1n < t}, where Sio £ 0 ., Then

{Ni(t) ; £t >0} is the renewal zounting process associated with {xir}m . The
r=1

A Tl AR AL S 2 i Fim e £ 32 o

YT

3 following theorems are well known (cf. Feller, Vol. II, (1966) and Ross (1970)).

e
et

] 1.1 Theorem:

Let {Ni(t) ; t > 0} be a renewal counting process corresponding to

|v

i
é X ® where EX, = Th ?
: {Xic}  owhe i- Mpocothen 1
- i r=1 2
| 3
3 i
( N () j
@.1) lim ~2— = = a.8. , :
] Lo Yy ?
]
and :
i
ENi(t)
(1.2) lim ¢ ==,
t o Hy

1iv.,

where a.s. means almost surely with respect to P .

4

We will need the following generalization of the asymptotic ncrmality of the

renewal random variable, Ni(t) , in Section 3. Let {Xr}m be a sequence of
r=1

LON oo 2 LA,

nonnegative random vavriables, not siecessarily independent or identically distributed,

k¢ with an asgociated counting process {N(t) ; t > 0} defined by
‘ ;

2 rn N
i, i S s PR

cam -

Pec;s




n
sup {n I Z Xr :_t} X, £ ¢t
r=1 -
N(t) =
0 X, >t

The following theorem and its ccrollary can be p-oved by the arguﬁent in Feller.

Volume I, (1968), p. 321.

1.2 Theorem:
9 -y [nT]
(1.3) ('m)™F ] & -~ N(0,T)
r=1
as n ~»~ if and only if
~ -1
(1.4) (20 EN(nT) - nt/ul - N(O,T)

.where { | means greatest integer contained within the brackets.

1.3 Corollary:

1f {X }w is a renewal process with EXr =y and Var Xr = 02 s then
r=1

both (1.3) and (1.4) hold.
Billingsley (1968), pp. 148-150, and Iglehart and Whitt (1969) generalize

Theorem 1.2 to Wiener processes on [0,1] .
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; 2, AVERAGE SYSTEM UP TIME: ALMOST SURE RESULTS
% %
i It will be useful te study the piucess {U(t) ; t > 0} where U(t) is A
é the system functioning time (or up time) in [0,t] . Similarly, let D(t) be %
A . :
E the down time in [0,t] so that U(t) + D(t) = t . Figure 2 is a very useful i
E representation of a series system failure history in terms of system up time, %
3 I
: uct) . ;
: ke
3 :
'5.‘ %
s /‘: E:
5 1
3 ] 4
: £ P52 i
3 4 j‘
: g D1 3
3 [o] 3
2 q
5 D2 ﬁ
&
Diy
: 0 xil System Functioning Time, U(t)
p 3
-, i2 2
B: )
~ %2 ~ 4
3 4
1
3
i
FIGURE 2 3
j
i
k]
Let Ni(t) be the number of failures of component i in real time ¢t . %
3
Observe that %
3 N, () = N [U(D)] ,
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where {Ni(t) ; £t >0} dis the renewal counting process associated with

{xir}m . However, Ni(°) and U(t) are not independent, since in particular
T r=1

Lhalc Stk Bobinl a7 0l d 4

U(t) = t implies Ni[U(t)] = 0 . (We assume that all components are new at §

t =0 for definiteness. However, the limiting results are true regardless of

I AL,

the initial conditions.)

3 2.1 lemma:

PTG P

If 0 < My < and 0 Sy < (i=1,2, ..., k) , then

Ni[U(t,W),w} 1
(2.1) 1im —————— = = a.s.,

£ U(t,w) My

where we have included the argument w € @ to emphasize that all random variables

are defined on the same probability space (Q,A,P) .

TN T S

Proof: :
3
Under the hypotheses U(t,w) -+ « almost surely as t + « , Since Ni(t,w) {
KN
3
and U(t,w) are defined on the same probability space, (1.1) implies (2.1).]] k
5
2.2 Theorem: 3
:
if 0<ui<°° and Oivi<w(i=1,2,...,k),then j
]
U(t) K L et é
(2.2) lim === = |1 + v,/u =" 1, a.s. . 3
L0 - j:l j j
3
Proof:

Note that

ity § TR A Y

y
]
3
k
oI #4CH b AN R LSO
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The inequality results from the fact that the system may be down at time ¢t . 3
Since U(t) + D(t) = t , ;
3 :
3 ’1
a3 uce) _ 1 1
1. t D(t) 5 )
: SO ko, MO w o ;
3 i 3
, L+ ] o= Dy “HD ‘%
! 1=1 N (£) =1 . ;
:’ Ny (e
3 By the strong law, Y D, =+ v, as t+e . By Lemma 2.1, i
1 r a.s. 1 . 3
4 N, (t) r=1 &
;. 1 3
B ;i
3 N [U(t)] 3
b B AN as t +> = . Hence
: v(t) a.s. My ’
1 :
e U(t) 1 _ :
3 ti: t = kv, o "o 3
4 1+ [ = ""
;. 1=1 ¥4 ,
K g
E 5
3 The reverse inequality is proved similarly.|| ?
3
2.3 Corollary: i
$
i
Under the same conditions, i
4 EU(t) .
: ——é—— > Ty as tre, i
3 j
‘% Proof: ¢
i
Since Ugt) <1 and HEEL a7s. o ® it follows by the Lebesgue dominated H
convergence theorem that
1 BUCGE) 4 n as t e L]
3 t 0
]
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:

] 2.4 Corollary: 7

3 Let Di(t) be the down time for component i in {O,t] . Then under . i

the same hypotheses, é

-

b, (t) v 3

(2.3) lin 2— = L. ;

o © “8e My é

éc.

.:

Proof: 5

‘é

:?:

; Note that 3

: Ni(t)—l Nigt) ;

‘ I Db, <D.(t) < D. :

-1 ir oy AT :

E so that ;

] N, (t) )

' t et BT t

_'ﬁi(t) T

Hence,

D, () <~v—i-n
= n 0

e lim

e

t

[ X

by the strong law, Lemma 2.1 and Theorem 2.2.
{

The reverse inequality is proved similarly.]l

Of course, it also follows from Corollary 2.4 that

2 k v
i lim Dst) as. ™o Z Y .
3 tro R S

o
s
" ANk At AR
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2.5 Corollary:

Under the same hypotheses,

ﬁi(t) "0
(2.4) lim t =S o i = 1,2, ce ey k .
t—)m a. L[] ui
Proof:
t u(t) toa.s. Wy 0

by Lemma 2.1 and Theorem 2.2.||

2.6 Corollary:

Under the same hypotheses,

(2.5) Hm —————— = — |
oo My

Proof:

N, (£ _ N, [U()] ) N, (t)
t t - t

By the elementary renewal theorem, (1.2)

ENi(t) 1
. "W
¥y

Also, ENi(t) < e for all t . Hence, there exists M such that

ENi(t)

sup —_E———-<M « The conclusion follows from Corollary 2.5 and the Lebesgue
t

dominated convergence theorem. ||

11
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Average Availability

We call T—l.} P(£{t) = 0]Jdt the average availability in [0,T] . It is a
0

well known property of stochastic processes that
T

(2.6) T'l.f'p[g(c) = 0Jar = BD.
0

an easy conscquence of Fubini's Theorem. It follows from Corollary 2.3 that

T
2.7 lim T—lfP[!;(t) = 0]dt = Ty
T 0

1f 1im P[£(t) = 0] exists, then it can easily be shown using (2.7) that
ol 224

(2.8 lim P{E(t) = 0] = LA
Lo

The limit in (2.8) will not always exist under the hypotheses of Theorem 2.2,
Sufficient conditions for (2.8), for example, are Fi nonlattice and Fj
exponential (j # 1) .

Similarly, if P[&(t) = i] exists, then

(2.9) 1im P{E(t) = 1] = =

Lo

i .

Syster Mean Time Betwecen Failures

Each time the system is repaired, the time until next failure will of course
depend on the repair history of each component. However, the average of successive
up times will converge to a limit, say u . Likewise the average of successive

down times will converge to a limit, say Vv . To calculate these guantities, let

- k ~
N(ty = Z Ni(t) be the number of system failures in [0,t] .
i=1

praiet Eoaadaua

= i A .-

3
]
&
3
3
k4
H
H
i
A

H
3
A
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2.7 Theorem:

If 0 < My < and O v <R (i =1,2, ..., k) , then the limiting average

of system up times will be a.s.

k 1
(2.10) w=1/7] ™
i=1 "1

while the limiting average of system down times will be a.s.

k
(2.11) v=y J

v,/u, .
1=1 i"71

Proof:
The average of system up times in [O0,t] will be approximately U(t)/ﬁ(t) .

(The error will goc to 0 a.s. as

t -+ , as in previous proofs.) Since by

N, (t)
= nO/u

Theorem 2.2, lim U(t)/t = T s and by Corollary 2.5 1lim T aTs

toeo a.s. i’

t oo
it follows that

-0

k
def - - Y
v o= lim U(t)/N(t) ass. ﬂo/«%o iz ” ) .

Hence,

. E 1
lim U(e)/N(e) = 1 -,
t a.s, 4o1 Wy

The average of system down times in [0,t] will be approximately

g
E
!
:
4
3
1
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By Corollary 2.5 and the strong law,

k N,(t) N, (t)
z -i - 1 Z Dir
i=1 N(t) Ni(t) r=1
k v
i def
U I vt I
e i=1 "1
Remark:
LS 1
If failure distributions were exponential, then of course 1 Z o would
i=1 "1

be the expected duration of a system up time each time it is up, independently

of system past history. It is interesting that in the limiting sense, the average

duration of a system up time is

ik
u::]_ Z.—-l_
i=1 ¥i

for arbitrary failure distributionms.
For a one unit system with mean life u and mean repair time v , the

limiting system fractional up time iIs

(2.12) w/ (u+v) .

For our series model, the limiting fractional system up time is, by Theorem 2.7,

k Vi k vi
(2.13) 1:0=1/l+ Z . =u/[u+u z T = u/(u + V)
i=1 "4 i=1 "1

where now u is defined by (2.10) and v by (2.11). From Theorem 2.7, we see

that (2.13) is the analogue of (2.12).
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3. ASYMPTOTIC DISTRIBUTIONS

k
To ohtain the asymptotic distribution of Ni(t) , N(¢) = ] Ni(t) , and
i=1

U(t) , we must also specify the varlances ci = Var xi and Tf = Var Di

(1i=12, ..., k) . Let m, = uiﬂal ‘or 1 =1,2, ..., k. As we shall show,

n o is approximately the mean time between failures of component i ., Let *

denote normed random variables. Although normed random variables will have

asymptotic mean 0 , the asymptotic variance i1s not necessarily 1. In particular,

let

% VY o8 -1
(3.1 Ni(t) =t [Ni(t) - tmi] .

We first state our main results before presenting proofs.

3.1 Theorem:
2 2
If 0‘“4<°°’°ivi<°°»°<°i<°°’°.<_fi<°° for 1 =1,2, ..., k,

then
-~% ~% %
(V0.8 ..., i ()

is asymptotically (t - «) multivariate normal with pean vector 0 and variance-

covariance matrix

L=ty

3 2 -1 2 -2 2 -2
+ T Mg ] - Vo, - vjojuj ] (i ¢4 1)

A

A i g

-

L) we as

M SR8 B 1 S el 2 3 2 kB

2 i a2 adnanalore Zatd, :
R L U AT L S P P A e S S P B e R L CONE VLU VRLS NS S S S TR Py

E
3
i
1
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&
|
] 2 .32
3 (3:3) Vg = V] T mw
; and
3
: w2 = goct 4+ M % T u~l +u, ) °2v2u-3

* ’

and
4 -1
% (3.4) e, = 1+ X vju;l » Ty = [} + Z vjujf] .
- 3# §=1
%
; 3.2 Corollary:
§ Under the conditions of Theorem 3.1,
p % l[y (t) - tm #]
k- i
i
3 is asymptotically (t -+ =) N(0,1)
; 3.3 Theorem:
E . K a ko
Let N(t) = ] N (t) and m = = ] m,~ . Under the conditions of
i b
i=1 i=1
Theorem 3.1,
t ;‘v l[N(t) - tm ]
is asymptotically (t =+ «)} N(0,1) , where
i

; ‘ (3.5) v2 -2 Z [}m -V )202 -3 tiuzl] .
E ‘ . i=1

3.4 Theorem:

Let U(t) be the system up time in [O,t] . Under the conditions of

Theorem 3.1,

1
!
i
;
i
;
g
;
]
:
b4
i
i
§
3
f’f\
]
:
?
%
!
g
:
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;’ 1[U(v:) - t]

is asymptotlcally (t »+ «) , N(0,1) where
2 3l ¥ 1232 2o
(3.6) u® =y 12 (viui o + Tuy ) .

3.5 Corollary:

Let D(t) be the system down time in [O,t] so that U(t) + D(t) =t .

Under the conditions of Theorem 3.1

W) - @ - wpt)
and

_ -k
%[i my + viwimis] [Di(t) - nit]

are asymptotically (t + «) N(0,1) where Di(t) is the down time of component

i in [0,t}

Applications of these results to the problem of determining maintenance costs

are discussed in Section 4.

Proofs of Theorems:

For mathematical convenience. we will work with the random varisble which
is the number of completed repairs of component 1 in [O,t] . We do this because
we want to assume that all c~—-onents are new at t = 0 . A nratural cycle, then,
ends with a completed repair. Asymptotically, the number of failures properly
normed will have the same distribution as the number of completed repairs
similarly normed. For this reason we use ﬁi(t) to mean the number of completed

repairs in [0,t] for the remainder of this section.
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n
Let Sin = Z Xir and Sio = 0 . The time to the first completed repair of .
r=1 A
component 1 will then be %
;I
Y., =X, +D, ., + D 3
' il il il j#1 s=1 is %
4 [+ 3
where {Nj(x);x > 0} 4is the renewal counting process associated with {Xj } E
r=1 ;
i
as in Section 1. Similarly, the time between the r ~ 1 and rth completed é
; repair will be %
% N :
1 Z k| (Si;r) |
(3.7) Y, =X, +D, + D . 3
ir ir ir - is £
: j#i S—Nj(si,r-l)+1 ‘ %
1 3
Let
3
1 ; Fop e NPT |
f (3.8) Z, = Y, =8, + D, + ) L, .
3 in 5 ir in =1 ir j#L r=l ir

3.6 Lemma:

e PR s S R,

If 0<u <= and o‘g_viwo {d=1,2, ..., k) , then

-1 -1 def

lim n 72 = u.n =" m, .

- in a.s. "1 0 i
Proof:

-1 -1 ¢

By the strong law n Sin als. My and =n rzl Dir ats. Vi Since

My > o, sin ats, © 388 mr e, and since uj >0, Nj(t) ats, © a8 t e,
Hence
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N,(S,.)
1 3 zin ) N](Sin) ii_n s wal,
Nj(sin) is S nl|a.s. §3°1

s5=1 in
again by the strong law and (2.3). The conclusion of the lemma follows. ||

The processes {Zin;n > 1} and {ﬁi(t);t > 0} are related by

) max {n | 2, 5t 2, <t

(3.9) Ni(t) =

0 Zil>t’

Since the partial sum process {Z, j;n > 1} and the counting process {Ni(t);t > 0}

in
are essentially inverses of each other, it will be sufficient to determine the
asymptotic normality of the partial sum process.

From (3.9) we observe that for fixed < > 0

ﬁi(nr)
-1 - - kint =
w,n z [Yir - mi] [m - Ni(n‘r)]
r=1 i
(3.10)
Ni(nr)
:_:_x:a;tirf.;5 ) [Yir - mi] + mzln-%Y . ’
r=1 i,Ni(nT)'H..
so that asymptotically
ﬁi(nt)
[ -1 -1 -
(3.11) n [mmi - Ni(m)] LA rzl [Yir - mi] ,

where . means asymptotic equivalent in distribution. On the other hand, it is

well known (Reayi (1957)) that

2]

-k
(3.12) n [¥Y, -m, ] ~n
rzl ir i =1
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Ni(nr)
since " A s, ]/n‘.i by (2.4).
% def Y% T
It will be useful to expand 2, = m } Iy, -m,] as follows:
n r=1 ir i
L % ¥
Zin n (Sin - nui) +n z (Dir - vi)
r=1
- Nj(sin) =Y Sin
+n * ) ) (0, - v) +n I ov, Nj(Sin) -
j#L r=1 J i#i J i
-1 v
+qn 2 X ;i (Sin - nui)
R S
* —35 -1 A *
Let S, =1 (S, -n_.) and c, =1+ ) v.u, . Then we can rewrite 2 as
in in i i 341 3§73 in
® - B
Zin= oSy tm T L0y - vy)
r=1
4 Ny (850 4 5.
+n * ) ) (D, = v +n ) ZIEACHR IRl P
j#i r=1 J i#1 3
Also
s
2 ¥ 47t li 'y
in T S TRl rzl Djp = Vy)
(3.13)

-3 -1
+ jgi n vj[Nj(npi) - nuiuj ] .

Note that the summands in (3.13) are now independent.
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3.7 Lemma:

k
* - -
1im Var Zin = cioi + ui Z Tfujl + ui Z Ogv?u 3
S 3 = - J j
(3.14) n j=1 i#H
def 2
= wi ’

where ¢, = 1 + v, .
) J/uj

Proof:

Use representation (3.13) and the well-known result

Var n-%[Nj(nr) - nl/uj] - c? ;31 1

We use (3.11) and (3.12) to write

=V

(3.15) n~%vj['j (nuy) - nuiugl] ) _":11 S:[nu u"l] |
1%

Proof of Theorem 3.1:

Frow Theorem 1.2 and representation (3.13) it is obvious that the marginal

random variables ﬁ:(t) are asymptotically N(O,wim;3) where wi is given by
(3.14). Using (3.15) we see that
o]
ZI - s - 1 v wols + 0 § izj (D, - v,)
n i“in 341 i3 iE“qﬂgl] jo1 -1 jr j

%
%
%
3
3
i
1
1
i
%}
3
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From representation (3.16) it is easy to see that aribtrary linear combinations

*
in

is asymptotically multivariate normal.

It remains to compute the variance-covariance matrix. From Theorem 1.2 and

Lemma 3.7, it follows that

as given by (3.3).
.k ~% il
To compute Cov [Ni(t),Nj(t{] for i # 3j , recall that by (3.15)

-1

~k *
Ni(nT) ~ -m, 2 .

]

Hence,
def % <% o -1-1 * %
vij =" Cov [Ni(nr),Nj(nTﬂ = my mj Cov [Zi[ﬂl]’zj[ﬂl]]

for 0 <1 <1 . Using (3.16) we see that

-1
K K [nnrous ]
* -1_% -1.* - ,
(3.17) 2 ntn " T S - Z vu's + n El r§1 ‘Dsr - vs)

It fcllows that for i # j ,

~% % "
of the Z, 's are asymptotically normal. It follows that Nl(t)’NZ(t)’ veus Nk(t)

'
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!
§
d
* * ;
Cov |2 y L 5
nt Ra s 2
=) i,
i 3 %
v v 2
14 14 ;
L Var |S S - % T Var /S T i
\Ji \lj
k k &
2 -2 * 1 !
+ z vsps Var |S - + X “Ous T T & i
s=1 S[ o] =1
Mg :
1=1,
m,{-v “252 _ 252 4 n % [vz 3.2 4 Tzu“ ] I
3 AT UL uj 3 0 g=p LS s s's :

Proof of Theorem 3.3:

From the previous proof we know that

Bt 0k _eazresrd n ok N unaad VLA M LN £ R NS 50 e oY SN L% AT L s RS S0 Sk b

k
~% - - ~1 %
N (n1) def n %(bl(nr) - nm 1] ~ - X m 1Z 0<t=<1l
n i nt
1=1 1[;—]
1
From (3.17) we see that i
A
-k -1 E -1 -1 E -1 % %
N (nt) - -m m, S + v.u, S d
n 0 =1 i nTmy j=1 373 ning
i 3 "
1 3 j

[SEY LR Y FEWPT N T S DS R SUSRVEN PP DN

(3.18) is clearly asymptotically normal with variance
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1
' v s g jgl [@ - vphis) + 5] ¢
% at 1 =1. ‘
i Proof of Theorem 3.4:
g By definition of the up time, U(t) , in [0,t] ,
> ’

Ni(t Ni(t
Do oX_ <u()y < ] X _+X
r=1 r=1

’ LN (o
i Since sup (X _ \//a converges to 0 in probability, It follows that
3 1<l i,Ni(Tn)+l
; ﬁi(nr)
3 * def -% - N hT
3 U r) "8 nTAUGen) - mengl - (X -y 4 ui[Ni(nr) -2 ]
r=1 i
3 for 0 <t <1,
= As in previous proofs
! nt *
n ui[Ni(nr) - = ] - —nOZ I
1 i[;—]
E: i
5
P Hence
* * *
E Un(nr) ~ S -

e
|t
B'a
[ =t
et
=
o
(X
[
| aumamen |
=Rt}
[ el X ]
| S }

i

3 R
_i.:m.;\)‘ Ay P B N PO

Using (3.17) we see that

3 [ntn u—l]

3 U*(nr) u E vouls” n = § g ! @ v,)
F: ~ u 17 — TN - .
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is asymptotically normal with variance
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4. COST OF REPAIR :
First suppose that component i costs di dollars to repair each time it :é

i

fails regardless of the time to complete repair. Then the cost accrued during g
[0,t] is ]
]

¢ (e) = Z d () ;

.é'

:

i

and the cost per unit of time is, in the limit, 3
i

C, () k j

.1) vim2— =5 ] el ;
too i=1 3

¥

Applying the techniques used in the proof of Theorem 3.3, we can show that ¢ §
k

"l'f -1 2 H

(4.2) t [Cl(t) - 'ﬂo z diui] -+ N(O,Gl) s ;
i=1 z

{

1

H

where ' :
;

3

2

k :

2 -3 2 :

6 =7 z Z d,m u, © ;

1 0 i=1 [ (j=l ) i] i1 :

2

k

( R ) 321 N

Alternatively, suppose that it costs d, dollare per hour of doum time for

component 1 ., Now the total cost accrued during [0,t] becomes

k
c,(t) = § d.,p ()
2 A e

is the down time for component i in ([0,t] . Then

where Di(t)




(4.3)

by (2.7).
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c,(t) k
2 -1
1im = n, ) d,v
fom 0 & 1'%

4,1 Theorem:

Under the conditions of Theorem 3.1,

(4.4)

where

2
where wi

Proof:

Obviously, the normed cost function is asymptotically normal.

is given in Lemma 3.7.

n.;2 C,(nt) - ntn % dvuit
2 0 L “tifs

R (nt)
“-% % 12 di(Di - vi) + n—% § vidi[ﬁi(nt) - nrm;l]
1=1 =1 r i=1
—
iy §ovyaentst
~n d, (D v,) v,dm,~ 2 .
=1 pm1 1A AT g A 1[ T il]

Its variance 1is

easily seen to be (when t = 1)

k
2 -1_2 2 -3 21,2
- 2 [ 1 ri + vimi wi { .|]

N,

N
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